
Estimating Software Effort and Function Point Using
Regression, Support Vector Machine and Artificial

Neural Networks Models

Sultan Aljahdali
Computer Science Department

Taif University

Taif, Saudi Arabia

aljahdali@tu.edu.sa

Alaa F. Sheta
Computers and Systems Department

Electronics Research Institute

Giza, Egypt

asheta66@gmail.com

Narayan C. Debnath
Computer Science Department

Winona State University

Winona, MN 55987, USA

ndebnath@winona.edu

Abstract-Accurate computation of software effort, cost and
time required ahead would greatly reduce risk and maximize
profit. Estimating software effort or computing the required
function point helps project manager to better estimate the
time and budget required for a project. Many statistical models
were proposed in the past. These models suffer many problems
related to parameter estimation and structure determination of
the models. In this paper we presents two models for software
effort estimation and one model for function points using Linear
Regression (LR), Support Vector Machines (SVM) and Artificial
Neural Networks (ANN). The proposed models have number of
inputs and single output. The first model utilizes the Source Line
Of Code (KLOC) as inputsj while the second model utilize the
KLOC and development Methodology (ME) as inputs to estimate
the Effort (E)j while the third model utilize the Inputs, Outputs,
Files, and User Inquiries as inputs to estimate the Function Point
(FP). The proposed SVM and ANN models show better estimation
capabilities compared to linear regression model models. These
models are capable of providing better assistant to software
project manager in computing the effort required of the number
of function points.

I. INTRODUCTION

Computing the estimate of a Software system is a common
problem for software engineers. It is essential for any software
development process to accurately compute the project budget,
project time and develop a plane for implementation [1]
[4]. These are serious practices in the software industry,
since poor budgeting and planning often has serious results.
Some applications include Military Application, NASA Space
Shuttle systems, Air Force and business for huge Enterprises. It
was mentioned that NASA and Air Force projects spent about
50% of their development cost in software development.

In the past few decades, it was noticed that software
community experiences many challenges associated to com
puting the exact software resource prediction. Many models
were proposed to handle this problem. These models can
be classified as theoretical such as the Putnam's model [5],
[6] and empirical models such as the Walston and Fleix [7].
Theoretical models can be characterized by a formulas based
on global assumptions such as the number of man-months
involved in the development or testing process and the number
of problems to be solved at certain rate. Meanwhile, the
empirical models are that models which uses data collected

978-1-5090-0478-2/15/$31.00 ©2015 IEEE

from previous developed projects to evaluate recent projects
and evolve a new formulas for the current data that available
[8].

Soft Computing (SC) techniques is a relatively new concept
which was first defined in 1994 [9]. Neurocomputing and fuzzy
logic and hybridized version of both the neuro-fuzzy were
first presented. The domain of SC was expanded to cover
techniques such as Genetic Algorithms (GAs), Swann Intelli
gence (SI), Differential Evolution (DE) and many others. Two
innovative model structures were proposed to estimate software
projects effort inspired from the Constructive Cost Model
(COCOMO) using Genetic Algorithms (GAs) were presented
in [10]. The developed models were tested on NASA software
project data set with promising results. In [11], a multiple
linear based fuzzy models were proposed to model the effort
and function points. The proposed fuzzy models show better
estimation capabilities compared to other reported models in
the literature. An extended work on evolving software effort
estimation models Using Multigene Symbolic Regression Ge
netic Programming was presented in [12]. In [13], authors
provided a detailed study on using Genetic Programming
(GP), Neural Network (NN) and Linear Regression (LR) in
solving the software project estimation. A study on using soft
computing techniques for the development of software effort
and schedule estimation models were presented in [14].

In this paper, we plan to develop software effort estimation
model based on three methods. They are regression, support
vector machine and artificial neural networks. Regression
methods works by developing a simple linear model for the
relationship between the inputs and output variables. Least
square estimation is used to estimate model parameters. SVM
works by finding the best separation hyperplane which separate
classes of data. It generates lines of separations. Multilayer
Feedforward (MLFF) neural networks adopting the Backprop
agation (BP) learning algorithm to train the network and
generate the relationships between the inputs and output is
a nonlinear manner. ANN can produce complex relationships
based on the learning process of weight selections. We explore
number of case studies in this paper to estimate the effort and
function points. First: modeling the effort required for software
projects as a function of source line of code and methodology.
Second: modeling the function points.

The paper is organized as follows. In Section II, we provide
an example of the well-known effort and FP estimation models.
In Section III, we summaries the steps for both effort and
function point modeling. Number of subsections discusses the
modeling process along with description of the three proposed
methods. The evaluation criterion adopted in this study are
given in Section V. Experimental results and discussion are
presented in Section VI. Finally, we provide conclusion and
future work.

II. EFFORT AND FP ESTIM ATION MODELS

Most software engineers realized the essential importance
of developing correct effort/cost estimates of software projects
since it plays a critical role in the success of administration
of software resource. In the past, many studies [15], [16]
explained why it is hard to move these theoretical effort
estimation model to practical use. In [15], reports the results of
a survey which included 598 German software companies from
112 organizations which found from only 50% captured data
on completed projects, a 14% made any attempt to generate
any formal models from these data. Recently, it was reported
that well-known software estimation techniques are often very
inaccurate and suffer many problems [17] such as the existence
of noisy data.

In the following sections, we provide a literature review
on a famous algorithm model called COCOMO [18], [19].
This model is usually expressed as a function of software size.
We will also describe the Albrecht model for function point
estimation [20]. Albrecht originally proposed four function
types [20]: files, inputs, outputs and inquiries with one set
of associated weights and ten General System Characteristics
(GSC).

A. COCOMO Effort Model

COnstructive COst Model (COCOMO) is one of the most
famous software effort estimation model used in the literature.
This model was originally developed by Barry Boehm [18],
[19] and was extensively revised in [21]. COCOMO utilizes
the Kilo Line Of Code (KLOC) as input variable to estimate
the Effort. In [18], Boehm proposed three levels of the model
named: Basic COCOMO, Intermediate COCOMO and De
tailed COCOMO. The general COCOMO model equation is
presented by Equation l.

E = A x Sizei1 x EAF (1)

where E is the effort in man-months, A is a calibrated
constant, J-L is a size scale factor, Size is measured by the
KLOC and EAF is the effort adjustment factor from cost fac
tor multipliers. Three types of CO COMO models are presented
in Table I. They are: Organic, Semidetached and Embedded
models [22] along with the values of the parameters A and J-L.
In 1995 [19], Boehm proposed an advanced model structure
called COCOMO II.

One essential attribute that contribute to the modeling
process of the software effort found is the KLOC. Although
this attribute was significantly used in the COCOMO and
other known model structure but it was found not the only
significant attribute [10], [23]. Recently, tuning the parameters

TABLE I. BASIC COCOMO MODELS

Model Name Effort (El Time (Tl
Organic Model E = 2.4(KLOC)LUn T = 2.5(E)u.oo
Semi-Detached Model E = 3.0(KLOC)LH T = 2.5(E)VOO
Embedded Model E = 3.6(K LOC)UU T = 2.5(E)u:",

of the COCOMO model using differential evolution to provide
a better effort estimate was presented [24].

B. Albrecht FP Model

Albrecht's function point model became popular during
the 1980's and 1990's since it provided exceptional results
compared to other effort estimation model that count on the
KLOC as a measure of software size [25], [26]. Albrecht model
took in consideration the software system functionality as the
main attributes to measure the size of the system [20], [27].
A comparison between the Function Points [20], SLIM [5],
COCOMO [18], and ESTIMACS models was provided in [28].
The results were formed based data set collected from fifteen
completed software projects. The predictive capability of the
models were used to evaluate various model performances. In
1983, Albrecht [27], proposed the expansion of the function
type to a set of three weighting values (i.e. simple, average,
complex) and fourteen General System Characteristics (GSCs)
to compute the number of function point of a software project.

III. SOFTWARE PROCESS MODELING

In this research work, we are adopting the system modeling
process presented in [29] to build a relationship for input
output model. The basic idea of modeling the dynamics be
tween multiple inputs x variables and single output y variable
can summaries as follows:

1) Data Collection: Collect data for previously devel
oped projects such as the source line of code (KLOC),
adopted development methodology (ME), and other
characteristics of the planned software such as level
of reliability or allowable reuse.

2) Model Selection: In this stage we have to decide
the best possible model structure for the regression,
ANN and SVM. For example, the order of the linear
regression model, the number of neurons and number
of layers for the ANN and the type of kernel function
for the SVM method.

3) Learning Process: We need to adopt a suitable learn
ing technique to develop the model. For example, the
Backpropagation (BP) learning algorithm for ANN.

4) Model Validation: A set of performance measure
criterion shall be used to validate the developed
model's performance. For example, the value of the
mean absolute error.

IV. PROPOSED MODEL STRUCTURES

In the following sections, we will provide a description of
the models and techniques adopted in this research to solve the
effort and function point estimation problem. They include the
simple linear regression model that uses least square estimation
to find the values of the model parameters. The second method
is the SVM produce lines of separation between various data

sets according to their classes and finally the well-known ANN
model that build a complex nonlinear function approximation
model for given examples.

A. Linear Regression

The simple linear model Equation 2 can be expanded to a
multivariate system of equations as follows:

(2)

where Xj is the lh independent variable. In this case,
we need to use least square estimation (LSE) to compute the
optimal values for the parameters tY1, ... ,tYj. Thus, we have
to minimize the optimization function L, which in this case
can be presented as:

n n
'P = L E; = L(Yi -£i\X1 - ... cfnxn)2

i=l i=l
(3)

To get the optimal values of the parameters cf1, ... , cfn, we
have to compute the differentiation for the functions:

(4)

To Solve the set of Equations 4, we differentiate and equate
the results to zero. This way we shall produce number of
equations equals to the number of unknowns tY. Solving these
set of equations using LSE shall produce estimate for the
parameters and a model for the relationship between x and
y. The values of the estimated parameters shall be sensitive to
the available number of observations.

B. Support Vector Machine

SVM is a relatively new notion defined as a supervised
learning method which recognize patterns to solve many prob
lems in classification and regression analysis. SVM is capable
of classifying data set with two different category. SVM build
a classification model that is capable of separating the two
categories by a clearly defined gap that is as wide as possible.
The origin of SVM comes from Russia in the sixties [30], [31].
It is a nonlinear generalization algorithm based on statistical
learning theory. SVM was successfully used to solve variety
of modeling problems in early software quality prediction
[32], software reliability forecasting [33], software quality
prediction [34], predicting defect-prone software modules [35],
software repository mining [36] and stock market prediction
[37].

The learning process in SVM works as follows; assume we
have a set of training observations D such that:

where Yi is either 1 or 1, indicating the class to which the
point Xi is belongs. Xi has a dimension of I. SVM works
by finding the maximum-margin (i.e. best) hyperplane that

separate the points having Yi = 1 from those having Yi = -l.
Any hyperplane can be presented as given in Equation 6.

f(x) = wT 1jJ(x) + b (6)

In 1996, a new version of support vector machine which
suits regression problems was presented by Vladimir N. Vapnik
et all. [38]. It was named support vector regression (SVR).
Figure 1 illustrates the idea of the optimal hyperplane in SVM
that separates two classes. In the left part of the figure, lines
separated data but with small margins while on the right an
optimal line separates the data with the maximum margins. In
case of the training data are linearly-separable in the feature
space of 1jJ(x), this means that the training examples are
adequately well separated thus we can draw a hyperplane
between them. SVM maps the training vector Xi using the
function 1jJ in order to find many linear separator hyperplane
which maximize the margin.

SVM [39], [40] require the solution of the following
optimization problem:

Minimize

Subject to
�;:1 �llwW

Yi - WT1jJ(Xi) - b:S E (7)

where Xi is a training sample with target value Vi. The
prediction values]li is computed using wT 1jJ(Xi) + b. E is a
threshold parameter. A kernel function K (x, y) is essential
element for an SVM learning process. Now a day, many
kernels were proposed for the SVM. Some are listed below:

• Linear: K(x, y) = xT Y + c

• Polynomial: K(x,y) = (rxTy+r)d > 0

• Sigmoid: K(Xi' Vi) = tanh(rxf Xj + r)
• Radial Basis Function: K(x, y) = exp(-IX27")

• Gaussian: K(x, y) = exp(_IIX2��1I2)
where I, r, and d are kernel parameters.

C. Artificial Neural Networks

ANN consist of many processing units called neurons.
Using a learning algorithm these units are capable of pro
ducing a function that map a relationship between inputs and
output training examples. It was reported that ANN can solve
diversity of software engineering problems in the past. An
empirical validation of a neural network model for software
effort estimation was presented in [41]. Two Neural Network
models; Feed-Forward Neural Network (FFNN) and Radial
Basis Neural Network (RBNN) for software development
effort estimation were presented in [42]. A dissertation that
provided adaptive estimation framework for software defect
fix effort using neural networks was presented in [43]. The
dissertation proposed an economical effort model for software
product line testing. A review of ANN based models for
software effort estimation is provided in [44]. The system
modeling process based ANN is presented in Figure 2 and
adopted from [29].

The proposed block diagrams for the effort and function
point models are presented in Figure 3. This is the same
structure adopted for the other two methods adopted (i.e. linear
regression and SVM).

Fig. I. Optimal hyperplane in Support Vector Machine

Data

Collection �-----

!
Select ANN

Model �-----
Structure

�
Optimize

the ANN
�-----

Weights

�
Validate the

developed

Model

� Model

Accepted

Fig. 2. System Modeling Process based ANN

V. MODEL VALIDATION

In order to check the performance of the developed models,
we adopted number of evaluation criterion such as: the Root
mean square error (RMSE), Relative absolute error (RAE) and
Root relative squared error (RRSE). These evaluation criterion
were provided by the well-known data mining software tool
named Weka (Waikato Environment for Knowledge Analysis).
It is a popular machine learning software tool written in Java,
provided by the University of Waikato, New Zealand [45]. This
software tool was used to develop our results. The equations
which describe the evaluation criterion adopted by our models
are presented as follows:

1 n
MAE = - LIY-:01 n i=l (8)

y

KLOC

Inputs

Outputs

Files

User
Inquiries

KLOC

x

Effort

Effort

Number
of
Function
point

Fig. 3. Proposed structure for the effort and FP models

RMSE = 1 n
-L(Y -:0)2 ni=l

RAE = Lh=l Iy -:01
Li=lly -yl

RRSE = L�=l(Y -:0)2
L�=l(Y -y)2

(9)

(lO)

(11)

where y is the observed effort, :0 is the predicted effort and
y is the mean of the effort y based n measurements.

VI. EXPERIMENTAL RESULTS

A. Collected Data Set

To develop our effort estimation and FP estimation models,
we used sets of data provided by [8] and [20], [27].

• Effort Estimation Data Set 1: The first data set used,
in our experiments, was provided by Albrecht in [20],
[27] and also presented in [46]. The data set is given
in Table II. The data consists of 24 measurements that
relates the KLOC and the development effort. The data
set was sorted for experimental use. In this case, we
considered the KLOC as input to the model which we
are designing (See Equation 15).

•

E = f(KLOC) (12)

Effort Estimation Data Set 2: Another data set was
provided by Bailey and Basili in [8] from NASA
software projects. This data set consists of KLOC,
Methodology (ME) and Effort for 18 software projects
as shown in Table IV. In this second case, we are
considering the KLOC and the ME as inputs for the
model (See Equation 13). The data set was sorted for
experimental use.

E = f(KLOC, ME) (13)

• FP Estimation Data Set 3: In the FP modeling
process, we adopted the Albrecht data set [20], [27] as
shown in Table VII. In this case, our goal is to build
a model that relates the main inputs: Inputs, Outputs,
Files and Inquiries to the FP as output (See Equation
14).

E = f(Inputs, Outputs, Files, Inquiries) (14)

B. Effort Models based KLOC

We developed three models for effort based the KLOC as a
single input single output system. In Equation 15, we present
the linear regression model. The model structure adopted is
with simple order and the two parameters were estimated using
least square estimation.

E = 0.386 x KLOC - 1.7099 (15)

SVM model always combine some kernel for tuning. In
our experiments we adopted the Polynomial Kernel. The Poly
nomial kernel is a non-stationary kernel. An ANN model for
the effort was also developed using MLFF neural network with
single input attribute which is KLOC and a single output which
is the effort. This structure looks similar to the COCOMO
model where the KLOC was the only input for the model.

In Figure 4, we show the observed and predicted effort
using regression, SVM and ANN. In Table II, we show
the values of the computed effort in the three cases. The
perfonnance of KLOC based models is shown in Table III.
ANN was able to provide the highest correlation coefficient
and lowest mean absolute error. Thus, ANN outperfonn the
other two models.

Observed and Predicted Effort Using Regression, SVM and ANN
140,-----,-------,-------,-------,-------,

120

100

80

60

40

20

Samples

Fig. 4. Observed and Predicted Effort Using Regression, SVM and ANN

TABLE I!. COMPUTED EFFORT BASED KLOC

No. KLOC Effort Regression SVM ANN
I 3 0.5 0 0 6.141
2 22 2.9 6.783 6.047 6.471
3 15 3.6 4.081 3.705 6.306
4 40 4.1 13.732 12.07 7.38
5 30 4.9 9.871 8.724 6.763
6 29 6.1 9.485 8.389 6.718
7 24 7.5 7.555 6.716 6.532
8 35 8 11.802 10.397 7.027
9 52 8.9 18.364 16.086 8.773

10 28 10 9.099 8.055 6.677
11 57 10.8 20.294 17.759 9.693
12 20 11 6.011 5.378 6.417
13 24 11.8 7.555 6.716 6.532
14 42 12 14.504 12.74 7.551
15 48 12.9 16.82 14.747 8.201
16 96 15.8 35.35 30.809 33.978
17 40 18.3 13.732 12.07 7.38
18 93 19 34.192 29.805 30.495
19 54 21.1 19. \36 16.755 9.111
20 62 28.8 22.225 19.432 10.901
21 94 38.1 34.578 30.14 31.621
22 110 61.2 40.755 35.494 53.708
23 130 102.4 48.476 42.186 83.213
24 318 105.2 121.051 105.095 112.753

C. Effort Models based KLOC and ME

Three software effort estimation models based regression,
SVM and ANN were developed based on the KLOC and ME.
We adopted the linear regression model of order one. We
used ANN with one hidden layer, learning rate of 0.3 and
momentum of 0.2. The SVM model also has the polynomial
kernel. In Figure 5, we show the observed and predicted effort
using regression, SVM and ANN models.

In Table IV, we show the values of the computed effort in
the three cases. The evaluated performance criterion for KLOC

TABLE Ill. PERFORMANCE OF KLOC BASED MODELS

Criterion Regression SVM ANN
Correlation coefficient 0.8651 0.8651 0.9543
Mean absolute error 8.5154 7.9355 6.432
Root mean squared error 13.9574 14.5816 8.516
Relative absolute error 45.1456% 42.0709% 34.1002%
Root relative squared error 50.1681% 52.4117% 30.6099%
Total Number of Instances 24 24 24

TABLE IV. COMPUTED EFFORT BASED KLOC AND ME

No KLOC ME Effort Regression SVM ANN
I 2.1 28 5 4.496 5.099 3.956
2 3.1 26 7 8.826 8.9 6.897
3 7.8 31 7.3 8.211 9.627 8.223
4 5 29 8.4 7.153 8.029 6.556
5 4.2 19 9 20.578 18.796 14.922
6 10.5 34 10.3 7.672 9.892 8.88
7 9.7 27 15.6 16.729 17.088 14.501
8 12.8 26 18.9 22.581 22.683 19.855
9 12.5 27 23.9 20.7 21.067 18.39

10 21.5 31 28.5 27.638 29.093 27.378
11 31.1 35 39.6 35.427 37.973 37.911
12 46.5 19 79 80.561 78.901 81.281
13 54.5 20 90.8 90.45 89.078 91.447
14 46.2 20 96 78.68 77.285 79.764
15 67.5 29 98.4 95.78 96.837 99.5\3
16 78.6 35 98.7 102.784 105.466 106.881
17 90.2 30 115.8 126.513 127.901 119.696
18 100.8 34 138.3 \35.72 \38.201 124.384

and ME based models is shown in Table V. In this case, the
correlation coefficient and the mean absolute error are almost
the same with slight improvement for the ANN model.

E = 1.418 x K LOC - 1.456 x ME + 42.287 (16)

Observed and Predicted E"ort Using Regression, SVM and ANN 14o,----,----,----,-----,----��_,----�----,_--_.

120

100

80

60

40

20

°0L----L----�--��---L---- ,�0----�--�L---�--�,8
Samples

Fig. 5. Observed and Predicted Effort Using Regression, SVM and ANN

TABLE V. PERFORMANCE OF THE KLOC-ME BASED MODELS

Criterion Regression SVM ANN
Correlation coefficient 0.991 0.9905 0.9916
Mean absolute error 3.9428 3.6829 3.7723
Root mean squared error 5.9521 6.1499 5.8939
Relative absolute error 9.5725% 8.9416% 9.1586%
Root relative squared error 13.3942% 13.8394% 13.2632%
Total Number of Instances 18 18 18

D. Function Point Models

We developed models for the function point using regres
sion, SVM and ANN. Four attribute were used as inputs for the
proposed model. They are: Inputs, Outputs, Files and Inquiries.

The linear model developed for the function point is presented
in Equation 17.

F P 3.91 17 x Inputs + 6.4326 x Outputs

+ 9.8716 x Files + 3.4095 x Inquiries

47.1927 (17)

Figure 6 shows the observed and predicted FP using ANN.
The developed linear regression, SVM and ANN performance
are computed and reported in Table VI. The observed and
predicted values of the FP based the ANN model is given in
Table VII. The SVM model provided the least mean absolute
error with a correlation coefficient almost the same for the
three developed models.

Observed and Predicted FP Using Regression, SVM and ANN 2000,--------,----------,------'---'-,_-------,--------,

1800

1600

1400

1200

1000

800

600

400

200

25
Samples

Fig. 6. Observed and Predicted FP models using Regression, SVM and ANN

TABLE VI. PERFORMANCE OF FUNCTION POINT MODELS

Criterion Regression SVM ANN
Correlation coefficient 0.9857 0.9801 0.992
Mean absol ute error 71.8661 61.6962 77.3947
Root mean squared error 81.2526 103.27 86.9402
Relative absolute error 20.1553 17.303 21.7058
Root relative squared error 16.8499 21.4158 18.0294
Total Number of Instances 24 24 24

VII. CONCLUSIONS AND FUTURE WORK

In this paper we studied the problem of software effort
and function point estimation for software projects. This was
reported as a challenging problem for software engineering
community. We adopted number of methods to handle this
problem; linear regression, support vector machine and arti
ficial neural networks. The developed models based adopted
methods were tested using data set from real software projects.
It was found that ANN effort estimation models are more
accurate with respect to error computation. For the function
points models, the results for the three models were almost
similar with slight improvement in the mean absolute error in
the SVM model. This work will be extended by exploring other
forms of soft computing techniques to estimate both the effort
and the number of function points for software engineering
projects.

TABLE VII. COMPUTED FUNCTION POINTS USING VARIOUS METHOD

No. Inputs Outputs Files Inquiries
I 34 14 5 0
2 15 15 3 6
3 7 12 8 13
4 33 17 5 8
5 12 15 15 0
6 I3 19 23 0
7 17 17 5 15
8 27 20 6 24
9 28 41 I I 16

10 70 27 12 0
11 10 69 9 I
12 25 28 22 4
13 41 27 5 29
14 28 38 9 24
15 42 57 5 12
16 45 64 16 14
17 43 40 35 20
18 61 68 I I 0
19 40 60 12 20
20 40 60 15 20
21 48 66 50 13
22 69 112 39 21
23 25 150 60 75
24 193 98 36 70

REFERENCES

[1] C. F. Kemere, "An empirical validation of software cost estimation
models," Communication ACM, vol. 30, pp. 416-429, 1987.

[2] J. W. Park R, W. Goethert, "Software cost and schedule estimating: A
process improvement initiative," tech. rep., 1994.

[3] M. Boraso, C. Montangero, and H. Sedehi, "Software cost estimation:
An experimental study of model perfonnances," tech. rep., 1996.

[4] K. Pillai and S. Nair, "A model for software development effort and cost
estimation," IEEE Trans. on Software Engineering, vol. 23, pp. 485-
497, 1997.

[5] L. Putnam, "A general empirical solution to the macro software sizing
and estimation problem," IEEE Transactionson Software Engineering,
vol. 4, no. 4, pp. 345-381, 1978.

[6] L. Putnam and W. Myers, Measures for excellence. Yourdon Press
Computing Series, 1992.

[7] C. E. Walston and C. P. Felix, "A method of programming measurement
and estimation," IBM Syst. 1., vol. 16, pp. 54-73, Mar. 1977.

[8] J. W. Bailey and V. R. Basili, "A meta-model for software development
resource expenditures," in Proceedings of the 5th International Con

ference on Software Engineering, ICSE '81, (Piscataway, NJ, USA),
pp. 107-116, IEEE Press, 1981.

[9] L. A. Zadeh, "Soft computing and fuzzy logic," IEEE Softw., vol. 11,
pp. 48-56, Nov. 1994.

[10] A. Sheta, "Estimation of the COCOMO model parameters using genetic
algorithms for nasa software projects," Journal of Computer Science,
vol. 2, pp. 118-123, 2006.

[11] A. F. Sheta and S. Aljahdali, "Software effort estimation inspired
by COCOMO and FP models: A fuzzy logic approach," International
Journal of Advanced Computer Science and Applications, vol. 4, no. 11,
pp. 192-197,2013.

[12] S. Aljahdali and A. F. Sheta, "Evolving software effort estimation
models using multigene symbolic regression genetic programming,"
International Journal of Advanced Research in Artificial Intelligence,
vol. 2, no. 12, pp. 52-57,2013.

[13] J. J. Dolado and L. F. andez, "Genetic programming, neural network
and linear regression in software project estimation," in Proceedings of
the fNSPIRE Ifl, Process Improvement through training and education,

pp. 157-171, British Company Society, 1998.

[14] A. Sheta, D. Rine, and A. Ayesh, "Development of software effort
and schedule estimation models using soft computing techniques," in
Proceedings of the 2008 IEEE Congress on Evolutionary Computation
(IEEE CEC 2008) within the 2008 IEEE World Congress on Compu-

FP
100
199
209
224
260
283
289
400
417
428
431
500
512
512
606
680
682
694
759
794

1235
1572
1750
1902

Regression SVM ANN
225.22 240.373 151.873

158.044 198.744 129.328
180.678 220.915 157.309
267.883 300.144 193.754
244.311 223.009 152.302
352.926 296.626 209.736
229.162 28 I. I 52 188.092
328.134 393.181 287.602
489.213 502.715 393.109
518.767 490.237 352.4
528.03 501.92 345.085

461.527 410.755 305.647
435.103 508.767 410.092
477.448 519.496 424.79
574.031 590.101 473.451
746.201 717.585 717.584
792.012 714.984 801.141
737.428 690.652 612.934
681.883 686.902 667.259
711.498 704.358 708.114

1103.026 932.456 1211.953
1399.762 1260.829 1542.806
1863.505 1752.364 1708.501
1932.209 1901.744 1852.864

tational Intelligence (WCCI 2008), Hong Kong, pp. 1283-1289, June
2008.

[15] F. Heemstra, "Software cost estimation," Information and Software

Technology, vol. 34, no. 10, pp. 627-639, 1992.

[16] A. L. Lederer and J. Prasad, "Information systems software cost
estimating: A current assessment," v, vol. 8, pp. 22-33, 1993.

[17] T. R. Benala, S. Dehuri, and R. Mall, "Computational intelligence in
software cost estimation: An emerging paradigm," SIGSOFT Softw. Eng.
Notes, vol. 37, pp. 1-7, May 2012.

[18] B. Boehm, Software Engineering Economics. Englewood Cliffs, NJ,
Prentice-Hall, 198 I.

[19] B. Boehm, Cost Models for Future Software Life Cycle Process:
COCOM02. Annals of Software Engineering, 1995.

[20] A. J. Albrecht, "Measuring application development productivity," in
Proceedings of the Joint SHARE, GUIDE, and IBM Application Devel
opments Symposium, pp. 83-92, 1979.

[21] B. Boehm and et all, Software Cost Estimation with COCOMO II.
Prentice Hall PTR, 2000.

[22] O. Benediktsson, D. Da1cher, K. Reed, and M. Woodman, "COCOMO
based effort estimation for iterative and incremental software develop
ment," Software Quality Journal, vol. 11, pp. 265-281, 2003.

[23] A. Sheta, "Software effort estimation and stock market prediction using
takagi-sugeno fuzzy models," in Proceedings of the 2006 IEEE Fuzzy
Logic Conference, Sheraton, Vancouver Wall Centre, Vancouver, BC,

Canada, July 16-21, pp. 579-586,2006.

[24] S. Aljahdali and A. Sheta, "Software effort estimation by tuning
COOCMO model parameters using differential evolution," in 2010
IEEEIACS International Conference on Computer Systems and Appli
cations (AICCSA), pp. 1-6,2010.

[25] R. Rask, P. Laamanen, and K. Lyytinen, "A comparison of albrecht's
function point and symons' mark [] metrics," in Proceedings of the
thirteenth international conference on Information systems, ICIS '92,
(Minneapolis, MN, USA), pp. 207-221, University of Minnesota, 1992.

[26] S. Furey, "Why we should use function points [software metrics]," IEEE
Softw., vol. 14, pp. 28, 30-, Mar. 1997.

[27] A. J. Albrecht and J. E. Gaffney, "Software function, source lines of
code, and development effort prediction: A software science validation,"
IEEE Transactions on Software Engineering, vol. 9, no. 6, pp. 639-648,
1983.

[28] C. F. Kemerer, "An empirical validation of software cost estimation
models," Commun. ACM, vol. 30, pp. 416-429, May 1987.

[29] L.Ljung, System Identification - Theory For The User. Prentice Hall,
1999.

[30] V. Vapnik and A. Lerner, "Pattern recognition using generalized portrait
method," Automation and Remote Control, vol. 24, pp. 774-780, 1963.

[31] V. N. Vapnik and A. Y. Chervonenkis, "A class of algorithms for pattern
recognition learning," Avtomat. i Telemekh., vol. 25, no. 6, p. 937945,
1964.

[32] F. Xing, P Guo, and M. R. Ly u, "A novel method for early software
quality prediction based on support vector machine," in Proceedings

of the 16th IEEE International Symposium on Software Reliability
Engineering, 1SSRE '05, (Washington, DC, USA), pp. 213-222, IEEE
Computer Society, 2005.

[33] P-F. Pai and w.-c. Hong, "Software reliability forecasting by support
vector machines with simulated annealing algorithms," J. Syst. Softw.,
vol. 79, pp. 747-755, June 2006.

[34] X. lin, Z. Liu, R. Bie, G. Zhao, and 1. Ma, "Support vector machines
for regression and applications to software quality prediction," in
Proceedings of the 6th International Conference on Computational
Science - Volume Part IV , 1CCS'06, (Berlin, Heidelberg), pp. 781-788,
Springer-Verlag, 2006.

[35] K. O. Elish and M. O. Elish, "Predicting defect-prone software modules
using support vector machines," J. Syst. Softw., vol. 81, pp. 649-660,
May 2008.

[36] L. Yu, "An evolutionary programming based asymmetric weighted least
squares support vector machine ensemble learning methodology for
software repository mining," Inj Sci., vol. 191, pp. 31-46, May 2012.

[37] A. Sheta, S. Ahmed, and H. Faris, "A comparison between regression,
artificial neural networks and support vector machines for predicting
stock market index," International Journal of Advanced Research in
Artificial Intelligence (!JARAI), vol. 4, no. 7, pp. 55-63, 2009.

[38] H. Drucker, C. J. Burges, L. Kaufman, C. J. C, Burges, L. Kaufman,
A. Smola, and V. Vapnik, "Support vector regression machines," 1996.

[39] B. E. Boser and et aI., "A training algorithm for optimal margin
classifiers," in In Proceedings of the 5 th Annual ACM Workshop on
Computational Learning Theory, pp. 144-152, ACM Press, 1992.

[40] C. Cortes and V. Vapnik, "Support-vector networks," Mach. Learn.,

vol. 20, pp. 273-297, Sept. 1995.

[41] H. Park and S. Baek, "An empirical validation of a neural network
model for software effort estimation," Expert Syst. App/., vol. 35,
pp. 929-937, Oct. 2008.

[42] V. S. Dave and K. Dutta, "Comparison of regression model, feed
forward neural network and radial basis neural network for software
development effort estimation," SIGSOFT Softw. Eng. Notes, vol. 36,
pp. 1-5, Sept. 2011.

[43] H. Zeng, Adaptive Estimation Framework for Software Defect Fix Effort

Using Neural Networks. PhD thesis, Fairfax, VA, USA, 2005.

[44] V. S. Dave and K. Dutta, "Neural network based models for software
effort estimation: A review," Artif. Intell. Rev., vol. 42, pp. 295-307,
Aug. 2014.

[45] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P Reutemann, and 1. H.
Witten, "The weka data mining software: an update," ACM SfGKDD
Exploration Newsletter, vol. I I, pp. 10-18,2009.

[46] C. Schofield, An Empirical Investigation into Software Effort Estimation
by Analogy. PhD thesis, Bournemouth University, 1998.

