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Abstract-Accurate computation of software effort, cost and 
time required ahead would greatly reduce risk and maximize 
profit. Estimating software effort or computing the required 
function point helps project manager to better estimate the 
time and budget required for a project. Many statistical models 
were proposed in the past. These models suffer many problems 
related to parameter estimation and structure determination of 
the models. In this paper we presents two models for software 
effort estimation and one model for function points using Linear 
Regression (LR), Support Vector Machines (SVM) and Artificial 
Neural Networks (ANN). The proposed models have number of 
inputs and single output. The first model utilizes the Source Line 
Of Code (KLOC) as inputsj while the second model utilize the 
KLOC and development Methodology (ME) as inputs to estimate 
the Effort (E)j while the third model utilize the Inputs, Outputs, 
Files, and User Inquiries as inputs to estimate the Function Point 
(FP). The proposed SVM and ANN models show better estimation 
capabilities compared to linear regression model models. These 
models are capable of providing better assistant to software 
project manager in computing the effort required of the number 
of function points. 

I. INTRODUCTION 

Computing the estimate of a Software system is a common 
problem for software engineers. It is essential for any software 
development process to accurately compute the project budget, 
project time and develop a plane for implementation [1]
[4]. These are serious practices in the software industry, 
since poor budgeting and planning often has serious results. 
Some applications include Military Application, NASA Space 
Shuttle systems, Air Force and business for huge Enterprises. It 
was mentioned that NASA and Air Force projects spent about 
50% of their development cost in software development. 

In the past few decades, it was noticed that software 
community experiences many challenges associated to com
puting the exact software resource prediction. Many models 
were proposed to handle this problem. These models can 
be classified as theoretical such as the Putnam's model [5], 
[6] and empirical models such as the Walston and Fleix [7]. 
Theoretical models can be characterized by a formulas based 
on global assumptions such as the number of man-months 
involved in the development or testing process and the number 
of problems to be solved at certain rate. Meanwhile, the 
empirical models are that models which uses data collected 
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from previous developed projects to evaluate recent projects 
and evolve a new formulas for the current data that available 
[8]. 

Soft Computing (SC) techniques is a relatively new concept 
which was first defined in 1994 [9]. Neurocomputing and fuzzy 
logic and hybridized version of both the neuro-fuzzy were 
first presented. The domain of SC was expanded to cover 
techniques such as Genetic Algorithms (GAs), Swann Intelli
gence (SI), Differential Evolution (DE) and many others. Two 
innovative model structures were proposed to estimate software 
projects effort inspired from the Constructive Cost Model 
(COCOMO) using Genetic Algorithms (GAs) were presented 
in [10]. The developed models were tested on NASA software 
project data set with promising results. In [11], a multiple 
linear based fuzzy models were proposed to model the effort 
and function points. The proposed fuzzy models show better 
estimation capabilities compared to other reported models in 
the literature. An extended work on evolving software effort 
estimation models Using Multigene Symbolic Regression Ge
netic Programming was presented in [12]. In [13], authors 
provided a detailed study on using Genetic Programming 
(GP), Neural Network (NN) and Linear Regression (LR) in 
solving the software project estimation. A study on using soft 
computing techniques for the development of software effort 
and schedule estimation models were presented in [14]. 

In this paper, we plan to develop software effort estimation 
model based on three methods. They are regression, support 
vector machine and artificial neural networks. Regression 
methods works by developing a simple linear model for the 
relationship between the inputs and output variables. Least 
square estimation is used to estimate model parameters. SVM 
works by finding the best separation hyperplane which separate 
classes of data. It generates lines of separations. Multilayer 
Feedforward (MLFF) neural networks adopting the Backprop
agation (BP) learning algorithm to train the network and 
generate the relationships between the inputs and output is 
a nonlinear manner. ANN can produce complex relationships 
based on the learning process of weight selections. We explore 
number of case studies in this paper to estimate the effort and 
function points. First: modeling the effort required for software 
projects as a function of source line of code and methodology. 
Second: modeling the function points. 



The paper is organized as follows. In Section II, we provide 
an example of the well-known effort and FP estimation models. 
In Section III, we summaries the steps for both effort and 
function point modeling. Number of subsections discusses the 
modeling process along with description of the three proposed 
methods. The evaluation criterion adopted in this study are 
given in Section V. Experimental results and discussion are 
presented in Section VI. Finally, we provide conclusion and 
future work. 

II. EFFORT AND FP ESTIM ATION MODELS 

Most software engineers realized the essential importance 
of developing correct effort/cost estimates of software projects 
since it plays a critical role in the success of administration 
of software resource. In the past, many studies [15], [16] 
explained why it is hard to move these theoretical effort 
estimation model to practical use. In [15], reports the results of 
a survey which included 598 German software companies from 
112 organizations which found from only 50% captured data 
on completed projects, a 14% made any attempt to generate 
any formal models from these data. Recently, it was reported 
that well-known software estimation techniques are often very 
inaccurate and suffer many problems [17] such as the existence 
of noisy data. 

In the following sections, we provide a literature review 
on a famous algorithm model called COCOMO [18], [19]. 
This model is usually expressed as a function of software size. 
We will also describe the Albrecht model for function point 
estimation [20]. Albrecht originally proposed four function 
types [20]: files, inputs, outputs and inquiries with one set 
of associated weights and ten General System Characteristics 
(GSC). 

A. COCOMO Effort Model 

COnstructive COst Model (COCOMO) is one of the most 
famous software effort estimation model used in the literature. 
This model was originally developed by Barry Boehm [18], 
[19] and was extensively revised in [21]. COCOMO utilizes 
the Kilo Line Of Code (KLOC) as input variable to estimate 
the Effort. In [18], Boehm proposed three levels of the model 
named: Basic COCOMO, Intermediate COCOMO and De
tailed COCOMO. The general COCOMO model equation is 
presented by Equation l. 

E = A x Sizei1 x EAF (1) 

where E is the effort in man-months, A is a calibrated 
constant, J-L is a size scale factor, Size is measured by the 
KLOC and EAF is the effort adjustment factor from cost fac
tor multipliers. Three types of CO COMO models are presented 
in Table I. They are: Organic, Semidetached and Embedded 
models [22] along with the values of the parameters A and J-L. 
In 1995 [19], Boehm proposed an advanced model structure 
called COCOMO II. 

One essential attribute that contribute to the modeling 
process of the software effort found is the KLOC. Although 
this attribute was significantly used in the COCOMO and 
other known model structure but it was found not the only 
significant attribute [10], [23]. Recently, tuning the parameters 

TABLE I. BASIC COCOMO MODELS 

Model Name Effort (El Time (Tl 
Organic Model E = 2.4(KLOC)LUn T = 2.5(E)u.oo 
Semi-Detached Model E = 3.0(KLOC)LH T = 2.5(E)VOO 
Embedded Model E = 3.6(K LOC)UU T = 2.5(E)u:", 

of the COCOMO model using differential evolution to provide 
a better effort estimate was presented [24]. 

B. Albrecht FP Model 

Albrecht's function point model became popular during 
the 1980's and 1990's since it provided exceptional results 
compared to other effort estimation model that count on the 
KLOC as a measure of software size [25], [26]. Albrecht model 
took in consideration the software system functionality as the 
main attributes to measure the size of the system [20], [27]. 
A comparison between the Function Points [20], SLIM [5], 
COCOMO [18], and ESTIMACS models was provided in [28]. 
The results were formed based data set collected from fifteen 
completed software projects. The predictive capability of the 
models were used to evaluate various model performances. In 
1983, Albrecht [27], proposed the expansion of the function 
type to a set of three weighting values (i.e. simple, average, 
complex) and fourteen General System Characteristics (GSCs) 
to compute the number of function point of a software project. 

III. SOFTWARE PROCESS MODELING 

In this research work, we are adopting the system modeling 
process presented in [29] to build a relationship for input
output model. The basic idea of modeling the dynamics be
tween multiple inputs x variables and single output y variable 
can summaries as follows: 

1) Data Collection: Collect data for previously devel
oped projects such as the source line of code (KLOC), 
adopted development methodology (ME), and other 
characteristics of the planned software such as level 
of reliability or allowable reuse. 

2) Model Selection: In this stage we have to decide 
the best possible model structure for the regression, 
ANN and SVM. For example, the order of the linear 
regression model, the number of neurons and number 
of layers for the ANN and the type of kernel function 
for the SVM method. 

3) Learning Process: We need to adopt a suitable learn
ing technique to develop the model. For example, the 
Backpropagation (BP) learning algorithm for ANN. 

4) Model Validation: A set of performance measure 
criterion shall be used to validate the developed 
model's performance. For example, the value of the 
mean absolute error. 

IV. PROPOSED MODEL STRUCTURES 

In the following sections, we will provide a description of 
the models and techniques adopted in this research to solve the 
effort and function point estimation problem. They include the 
simple linear regression model that uses least square estimation 
to find the values of the model parameters. The second method 
is the SVM produce lines of separation between various data 



sets according to their classes and finally the well-known ANN 
model that build a complex nonlinear function approximation 
model for given examples. 

A. Linear Regression 

The simple linear model Equation 2 can be expanded to a 
multivariate system of equations as follows: 

(2) 

where Xj is the lh independent variable. In this case, 
we need to use least square estimation (LSE) to compute the 
optimal values for the parameters tY1, ... ,tYj. Thus, we have 
to minimize the optimization function L, which in this case 
can be presented as: 

n n 
'P = L E; = L(Yi -£i\X1 - ... cfnxn)2 

i=l i=l 
(3) 

To get the optimal values of the parameters cf1, ... , cfn, we 
have to compute the differentiation for the functions: 

(4) 

To Solve the set of Equations 4, we differentiate and equate 
the results to zero. This way we shall produce number of 
equations equals to the number of unknowns tY. Solving these 
set of equations using LSE shall produce estimate for the 
parameters and a model for the relationship between x and 
y. The values of the estimated parameters shall be sensitive to 
the available number of observations. 

B. Support Vector Machine 

SVM is a relatively new notion defined as a supervised 
learning method which recognize patterns to solve many prob
lems in classification and regression analysis. SVM is capable 
of classifying data set with two different category. SVM build 
a classification model that is capable of separating the two 
categories by a clearly defined gap that is as wide as possible. 
The origin of SVM comes from Russia in the sixties [30], [31]. 
It is a nonlinear generalization algorithm based on statistical 
learning theory. SVM was successfully used to solve variety 
of modeling problems in early software quality prediction 
[32], software reliability forecasting [33], software quality 
prediction [34], predicting defect-prone software modules [35], 
software repository mining [36] and stock market prediction 
[37]. 

The learning process in SVM works as follows; assume we 
have a set of training observations D such that: 

where Yi is either 1 or 1, indicating the class to which the 
point Xi is belongs. Xi has a dimension of I. SVM works 
by finding the maximum-margin (i.e. best) hyperplane that 

separate the points having Yi = 1 from those having Yi = -l. 
Any hyperplane can be presented as given in Equation 6. 

f(x) = wT 1jJ(x) + b (6) 

In 1996, a new version of support vector machine which 
suits regression problems was presented by Vladimir N. Vapnik 
et all. [38]. It was named support vector regression (SVR). 
Figure 1 illustrates the idea of the optimal hyperplane in SVM 
that separates two classes. In the left part of the figure, lines 
separated data but with small margins while on the right an 
optimal line separates the data with the maximum margins. In 
case of the training data are linearly-separable in the feature 
space of 1jJ(x), this means that the training examples are 
adequately well separated thus we can draw a hyperplane 
between them. SVM maps the training vector Xi using the 
function 1jJ in order to find many linear separator hyperplane 
which maximize the margin. 

SVM [39], [40] require the solution of the following 
optimization problem: 

Minimize 

Subject to 
�;:1 �llwW 

Yi - WT1jJ(Xi) - b:S E (7) 

where Xi is a training sample with target value Vi. The 
prediction values ]li is computed using wT 1jJ(Xi) + b. E is a 
threshold parameter. A kernel function K (x, y) is essential 
element for an SVM learning process. Now a day, many 
kernels were proposed for the SVM. Some are listed below: 

• Linear: K(x, y) = xT Y + c 

• Polynomial: K(x,y) = (rxTy+r)d > 0 

• Sigmoid: K(Xi' Vi) = tanh(rxf Xj + r) 
• Radial Basis Function: K(x, y) = exp( -IX27") 

• Gaussian: K(x, y) = exp( _IIX2��1I2) 
where I, r, and d are kernel parameters. 

C. Artificial Neural Networks 

ANN consist of many processing units called neurons. 
Using a learning algorithm these units are capable of pro
ducing a function that map a relationship between inputs and 
output training examples. It was reported that ANN can solve 
diversity of software engineering problems in the past. An 
empirical validation of a neural network model for software 
effort estimation was presented in [41]. Two Neural Network 
models; Feed-Forward Neural Network (FFNN) and Radial 
Basis Neural Network (RBNN) for software development 
effort estimation were presented in [42]. A dissertation that 
provided adaptive estimation framework for software defect 
fix effort using neural networks was presented in [43]. The 
dissertation proposed an economical effort model for software 
product line testing. A review of ANN based models for 
software effort estimation is provided in [44]. The system 
modeling process based ANN is presented in Figure 2 and 
adopted from [29]. 

The proposed block diagrams for the effort and function 
point models are presented in Figure 3. This is the same 
structure adopted for the other two methods adopted (i.e. linear 
regression and SVM). 



Fig. I. Optimal hyperplane in Support Vector Machine 
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Fig. 2. System Modeling Process based ANN 

V. MODEL VALIDATION 

In order to check the performance of the developed models, 
we adopted number of evaluation criterion such as: the Root 
mean square error (RMSE), Relative absolute error (RAE) and 
Root relative squared error (RRSE). These evaluation criterion 
were provided by the well-known data mining software tool 
named Weka (Waikato Environment for Knowledge Analysis). 
It is a popular machine learning software tool written in Java, 
provided by the University of Waikato, New Zealand [45]. This 
software tool was used to develop our results. The equations 
which describe the evaluation criterion adopted by our models 
are presented as follows: 

1 n 
MAE = - LIY-:01 n i=l (8) 

y 

KLOC 

Inputs 

Outputs 

Files 

User 
Inquiries 

KLOC 

x 
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Number 
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Fig. 3. Proposed structure for the effort and FP models 

RMSE = 1 n 
-L(Y -:0)2 ni=l 

RAE = Lh=l Iy -:01 
Li=lly -yl 

RRSE = L�=l(Y -:0)2 
L�=l(Y -y)2 

(9) 

(lO) 

(11) 

where y is the observed effort, :0 is the predicted effort and 
y is the mean of the effort y based n measurements. 



VI. EXPERIMENTAL RESULTS 

A. Collected Data Set 

To develop our effort estimation and FP estimation models, 
we used sets of data provided by [8] and [20], [27]. 

• Effort Estimation Data Set 1: The first data set used, 
in our experiments, was provided by Albrecht in [20], 
[27] and also presented in [46]. The data set is given 
in Table II. The data consists of 24 measurements that 
relates the KLOC and the development effort. The data 
set was sorted for experimental use. In this case, we 
considered the KLOC as input to the model which we 
are designing (See Equation 15). 

• 

E = f(KLOC) (12) 

Effort Estimation Data Set 2: Another data set was 
provided by Bailey and Basili in [8] from NASA 
software projects. This data set consists of KLOC, 
Methodology (ME) and Effort for 18 software projects 
as shown in Table IV. In this second case, we are 
considering the KLOC and the ME as inputs for the 
model (See Equation 13). The data set was sorted for 
experimental use. 

E = f(KLOC, ME) (13) 

• FP Estimation Data Set 3: In the FP modeling 
process, we adopted the Albrecht data set [20], [27] as 
shown in Table VII. In this case, our goal is to build 
a model that relates the main inputs: Inputs, Outputs, 
Files and Inquiries to the FP as output (See Equation 
14). 

E = f(Inputs, Outputs, Files, Inquiries) (14) 

B. Effort Models based KLOC 

We developed three models for effort based the KLOC as a 
single input single output system. In Equation 15, we present 
the linear regression model. The model structure adopted is 
with simple order and the two parameters were estimated using 
least square estimation. 

E = 0.386 x KLOC - 1.7099 (15) 

SVM model always combine some kernel for tuning. In 
our experiments we adopted the Polynomial Kernel. The Poly
nomial kernel is a non-stationary kernel. An ANN model for 
the effort was also developed using MLFF neural network with 
single input attribute which is KLOC and a single output which 
is the effort. This structure looks similar to the COCOMO 
model where the KLOC was the only input for the model. 

In Figure 4, we show the observed and predicted effort 
using regression, SVM and ANN. In Table II, we show 
the values of the computed effort in the three cases. The 
perfonnance of KLOC based models is shown in Table III. 
ANN was able to provide the highest correlation coefficient 
and lowest mean absolute error. Thus, ANN outperfonn the 
other two models. 

Observed and Predicted Effort Using Regression, SVM and ANN 
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Fig. 4. Observed and Predicted Effort Using Regression, SVM and ANN 

TABLE I!. COMPUTED EFFORT BASED KLOC 

No. KLOC Effort Regression SVM ANN 
I 3 0.5 0 0 6.141 
2 22 2.9 6.783 6.047 6.471 
3 15 3.6 4.081 3.705 6.306 
4 40 4.1 13.732 12.07 7.38 
5 30 4.9 9.871 8.724 6.763 
6 29 6.1 9.485 8.389 6.718 
7 24 7.5 7.555 6.716 6.532 
8 35 8 11.802 10.397 7.027 
9 52 8.9 18.364 16.086 8.773 

10 28 10 9.099 8.055 6.677 
11 57 10.8 20.294 17.759 9.693 
12 20 11 6.011 5.378 6.417 
13 24 11.8 7.555 6.716 6.532 
14 42 12 14.504 12.74 7.551 
15 48 12.9 16.82 14.747 8.201 
16 96 15.8 35.35 30.809 33.978 
17 40 18.3 13.732 12.07 7.38 
18 93 19 34.192 29.805 30.495 
19 54 21.1 19. \36 16.755 9.111 
20 62 28.8 22.225 19.432 10.901 
21 94 38.1 34.578 30.14 31.621 
22 110 61.2 40.755 35.494 53.708 
23 130 102.4 48.476 42.186 83.213 
24 318 105.2 121.051 105.095 112.753 

C. Effort Models based KLOC and ME 

Three software effort estimation models based regression, 
SVM and ANN were developed based on the KLOC and ME. 
We adopted the linear regression model of order one. We 
used ANN with one hidden layer, learning rate of 0.3 and 
momentum of 0.2. The SVM model also has the polynomial 
kernel. In Figure 5, we show the observed and predicted effort 
using regression, SVM and ANN models. 

In Table IV, we show the values of the computed effort in 
the three cases. The evaluated performance criterion for KLOC 

TABLE Ill. PERFORMANCE OF KLOC BASED MODELS 

Criterion Regression SVM ANN 
Correlation coefficient 0.8651 0.8651 0.9543 
Mean absolute error 8.5154 7.9355 6.432 
Root mean squared error 13.9574 14.5816 8.516 
Relative absolute error 45.1456% 42.0709% 34.1002% 
Root relative squared error 50.1681% 52.4117% 30.6099% 
Total Number of Instances 24 24 24 



TABLE IV. COMPUTED EFFORT BASED KLOC AND ME 

No KLOC ME Effort Regression SVM ANN 
I 2.1 28 5 4.496 5.099 3.956 
2 3.1 26 7 8.826 8.9 6.897 
3 7.8 31 7.3 8.211 9.627 8.223 
4 5 29 8.4 7.153 8.029 6.556 
5 4.2 19 9 20.578 18.796 14.922 
6 10.5 34 10.3 7.672 9.892 8.88 
7 9.7 27 15.6 16.729 17.088 14.501 
8 12.8 26 18.9 22.581 22.683 19.855 
9 12.5 27 23.9 20.7 21.067 18.39 

10 21.5 31 28.5 27.638 29.093 27.378 
11 31.1 35 39.6 35.427 37.973 37.911 
12 46.5 19 79 80.561 78.901 81.281 
13 54.5 20 90.8 90.45 89.078 91.447 
14 46.2 20 96 78.68 77.285 79.764 
15 67.5 29 98.4 95.78 96.837 99.5\3 
16 78.6 35 98.7 102.784 105.466 106.881 
17 90.2 30 115.8 126.513 127.901 119.696 
18 100.8 34 138.3 \35.72 \38.201 124.384 

and ME based models is shown in Table V. In this case, the 
correlation coefficient and the mean absolute error are almost 
the same with slight improvement for the ANN model. 

E = 1.418 x K LOC - 1.456 x ME + 42.287 (16) 
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Fig. 5. Observed and Predicted Effort Using Regression, SVM and ANN 

TABLE V. PERFORMANCE OF THE KLOC-ME BASED MODELS 

Criterion Regression SVM ANN 
Correlation coefficient 0.991 0.9905 0.9916 
Mean absolute error 3.9428 3.6829 3.7723 
Root mean squared error 5.9521 6.1499 5.8939 
Relative absolute error 9.5725% 8.9416% 9.1586% 
Root relative squared error 13.3942% 13.8394% 13.2632% 
Total Number of Instances 18 18 18 

D. Function Point Models 

We developed models for the function point using regres
sion, SVM and ANN. Four attribute were used as inputs for the 
proposed model. They are: Inputs, Outputs, Files and Inquiries. 

The linear model developed for the function point is presented 
in Equation 17. 

F P 3.91 17 x Inputs + 6.4326 x Outputs 

+ 9.8716 x Files + 3.4095 x Inquiries 

47.1927 (17) 

Figure 6 shows the observed and predicted FP using ANN. 
The developed linear regression, SVM and ANN performance 
are computed and reported in Table VI. The observed and 
predicted values of the FP based the ANN model is given in 
Table VII. The SVM model provided the least mean absolute 
error with a correlation coefficient almost the same for the 
three developed models. 
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Fig. 6. Observed and Predicted FP models using Regression, SVM and ANN 

TABLE VI. PERFORMANCE OF FUNCTION POINT MODELS 

Criterion Regression SVM ANN 
Correlation coefficient 0.9857 0.9801 0.992 
Mean absol ute error 71.8661 61.6962 77.3947 
Root mean squared error 81.2526 103.27 86.9402 
Relative absolute error 20.1553 17.303 21.7058 
Root relative squared error 16.8499 21.4158 18.0294 
Total Number of Instances 24 24 24 

VII. CONCLUSIONS AND FUTURE WORK 

In this paper we studied the problem of software effort 
and function point estimation for software projects. This was 
reported as a challenging problem for software engineering 
community. We adopted number of methods to handle this 
problem; linear regression, support vector machine and arti
ficial neural networks. The developed models based adopted 
methods were tested using data set from real software projects. 
It was found that ANN effort estimation models are more 
accurate with respect to error computation. For the function 
points models, the results for the three models were almost 
similar with slight improvement in the mean absolute error in 
the SVM model. This work will be extended by exploring other 
forms of soft computing techniques to estimate both the effort 
and the number of function points for software engineering 
projects. 



TABLE VII. COMPUTED FUNCTION POINTS USING VARIOUS METHOD 

No. Inputs Outputs Files Inquiries 
I 34 14 5 0 
2 15 15 3 6 
3 7 12 8 13 
4 33 17 5 8 
5 12 15 15 0 
6 I3 19 23 0 
7 17 17 5 15 
8 27 20 6 24 
9 28 41 I I  16 

10 70 27 12 0 
11 10 69 9 I 
12 25 28 22 4 
13 41 27 5 29 
14 28 38 9 24 
15 42 57 5 12 
16 45 64 16 14 
17 43 40 35 20 
18 61 68 I I  0 
19 40 60 12 20 
20 40 60 15 20 
21 48 66 50 13 
22 69 112 39 21 
23 25 150 60 75 
24 193 98 36 70 
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